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2.1   A Primer on Quantum Mechanics



Descrip9on of Quantum-Mechanical Systems
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• wave-par+cle duality implies that electromagne+c irradia+on can display par+cle nature while 
par+cles like electrons can display the characteris+cs of waves. 

• all informa+on on the quantum state of a quantum system at any +me  can be described 

mathema+cally by a complex func+on , called wavefunc+on 

•  can be regarded as a probability amplitude that defines the probability of the possible results 

of measurements made on the quantum system 

t
ψ(r, t)

ψ(r, t)



Dirac Nota9on
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• Dirac (“bra-ket”) nota+on treats wavefunc+ons as state vectors and u+lizes bras and kets 

• ket  denotes a state vector, that is, an element of an abstract complex vector space, the state 

space , and represents a state of a quantum system 

• bra  denotes a linear func+onal  that maps each vector  in the vector space  

to a complex number in the complex plane , as given by the scalar product , denoted 

most oÄen  

• legng the linear func+onal act on a vector  is denoted as  that has the form of 

a matrix mul+plica+on of the row vector  with the column vector  

• advantages to understanding wavefunc+ons as elements of an abstract vector space: 

• Bra-ket nota+on accomplishes simpler formula+ons of wavefunc+ons 

• linear algebra can be used to manipulate and understand state vectors corresponding to 
wavefunc+ons
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State Space
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• the ensemble of all wavefunc+ons, or quantum states, in which a quantum system can be found, 
forms an abstract complex vector space, the state space   

•  is a Hilbert space, i.e., a complex vector space equipped with a scalar product (inner product, 
projec+on product), that is a map  defined as 

  

• state spaces can be of finite dimension or infinite dimension; in the lader case, state spaces can also 
be discrete or con+nuous.   

• The spin state space of an electron in a magne+c field is of dimension 2, cons+tuted of the state 
up and the state down. 

• The orbital state space of an electron in an infinite poten+al is infinite and discrete. 

• The posi+on state space of an electron in space is infinite and con+nuous. 
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Proper9es of the Scalar Product
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Inversion and Linearity 

•  

• linearity on the right:  where   

• semi-linearity on the leÄ:  where  

Normaliza9on 

• .  also noted  is called the norm of  

• a state  is said to be normalised if   

Orthogonality 

•  

• two states  and  are said to be orthogonal if 
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Observables and Expecta9on Values
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• any observable , that is, a mesurable physical property of a quantum system, can be represented 

by a corresponding operator  , a mathema+cal operation that can be performed on the wave 

func+on  respec+vely the corresponding state vector  

• to obtain more informa+on on an observable  of a defined quantum system, the following 
associated equa+on, called Eigenvalue equa+on, needs to be solved: 

  

• wavefunc+ons  that fulfill the Eigenvalue equa+on are called Eigenfunc+ons (allowed states) 

• Eigenvalue  is a constant that to the value of the observable  

• expecta+on value can be calculated as 

  

because if  is an Eigenfunc+on, then 
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Hermi9an Conjugate Operators and Hermi9city
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• for any linear operator , the conjugate operator (adjoint)  is defined as: 

   

• Hermi+city: quantum-mechanical operators  that are iden+cal to their own adjoint are said to be 
Hermi+an operators.  

   

• any quantum-mechanical operator  corresponding to a physical observable  can be shown to 
be a Hermi9an operator.  
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Consequences of Hermi9city
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• Hermi+city has important implica+ons (by its defini+on): 

• all Eigenvalues, the values of the observables, are always real, that is,  

• the set of all Eigenfunc+ons  is complete 

• the ensemble of the Eigenfunc+ons form an orthonormal basis of the state, that is, they are 
orthogonal (hence, linearly independent) and normalized 

    for      and     

• any state vector can be formed from a combina+on of basis states with complex coefficients: 

  with   , for a discrete case 

   with   , for a con+nuous case 

• Hermi9city of quantum-mechanical operators  corresponding to a physical observables  are 
the basis for concepts such as hybridiza9on and linear combina9on of atomic orbitals
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Born Interpreta9on of the Wavefunc9on
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• probability density  to find a par+cle at the loca+on  at +me  is given by the square modulus 
of the complex wave func+on (which implies the density is always a real number) 

  

• probability  to find a par+cle in an infinitesimal volume  around a loca+on  at +me  is 

  

• normaliza+on: the probability integrated over the en+re space equals to 1 

    ⇔    

• due to Hermi9city, Eigenfunc9ons resul9ng from Eigenequa9ons with quantum-mechanical 

operators  corresponding to a physical observables  are normalized
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ρ(r, t) = |ψ(r, t) |2 = ψ*(r, t)ψ(r, t)

P(t) dτ r t

P(t) = ∫ |ψ |2 dτ

∫ |Nψ |2 dτ = 1 N = {∫ |Nψ |2 dτ}
−1/2

Ω̂ Ω



Quan9za9on Resul9ng from the Constraints of the Born Interpreta9on
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• an acceptable wavefunc+on must hence be square-integrable and normalizable func+on mapping 
each point of 3D space to a complex number 

• Born interpreta+on further implies that the wavefunc+on is 

• single-valued at every loca+on  

• not infinite over a non-infinitesimal region 

• con+nuous in slope and curvature 

• these condi9ons limits the choice of acceptable mathema9cal func9ons 

• quan9za9on of the allowed energies of a par9cle is the result of the finite probability density and 
the resul9ng constraints for the selec9on of acceptable wavefunc9ons

r


