

2

Molecular Structure and Intramolecular Electron Delocalization

Table of Contents

1. Introduction

- 1.1. Brief History of Organic Electronics
- 1.2. Challenges in Organic Electronics

2. Intramolecular Electron Delocalization

- 2.1. A Primer on Quantum Mechanics
- 2.2. From Atomic Orbitals to Molecular Orbitals
- 2.3. Molecular Orbitals in π -Conjugated Systems

3. Electron Delocalization in Organic Materials

- 3.1. The Origin of π - π Interactions
- 3.2. Organic crystals of π -Conjugated Molecules
- 3.3. Intermolecular Electron Delocalization

4. Intrinsic and Extrinsic Electronic Perturbations

- 4.1. Vibronic Coupling
- 4.2. Light-Matter Interaction

5. Charge Formation and Delocalization

- 5.1. Solitons
- 5.2. Polarons

5.3. Charges in Organic Materials

5.4. Charges at Interfaces

6. Charge Transport in Organic Materials

- 6.1. Overview of Transport Regimes
- 6.2. Band and Band-Like Transport
- 6.3. Polaronic Transport
- 6.4. Disorder-Controlled Transport
- 6.5. Towards a Unified View

7. Basic Organic Electronic Devices

- 7.1. Organic Field-Effect Transistors
- 7.2. Organic Photovoltaic Devices
- 7.3. Organic Light-Emitting Diodes

8. Organic Semiconductor Materials Preparation

- 8.1. Synthesis of π -Conjugated Molecules
- 8.2. Preparation of Thin Films
- 8.3. Patterning for Devices

9. Advanced Topics

2.1 A Primer on Quantum Mechanics

Description of Quantum-Mechanical Systems

- **wave-particle duality** implies that **electromagnetic irradiation** can display **particle nature** while particles like electrons can display the characteristics of waves.
- all information on the quantum state of a quantum system at any time t can be described mathematically by a **complex function** $\psi(r, t)$, called **wavefunction**
- $\psi(r, t)$ can be regarded as a **probability amplitude** that defines the **probability of the possible results of measurements** made on the quantum system

- Dirac (“bra-ket”) notation treats wavefunctions as state vectors and utilizes bras and kets
 - ket $|\phi\rangle$ denotes a state vector, that is, an element of an abstract complex vector space, the state space V , and represents a state of a quantum system
 - bra $\langle f|$ denotes a linear functional $f: V \rightarrow \mathbb{C}$ that maps each vector $|\phi\rangle$ in the vector space V to a complex number in the complex plane \mathbb{C} , as given by the scalar product $(\langle f|, |\phi\rangle)$, denoted most often $\langle f|\phi\rangle$
 - letting the linear functional $\langle f|$ act on a vector $|\nu\rangle$ is denoted as $\langle f|\nu\rangle \in \mathbb{C}$ that has the form of a matrix multiplication of the row vector $\langle f|$ with the column vector $|\nu\rangle$
- advantages to understanding wavefunctions as elements of an abstract vector space:
 - Bra-ket notation accomplishes simpler formulations of wavefunctions
 - linear algebra can be used to manipulate and understand state vectors corresponding to wavefunctions

State Space

- the ensemble of all wavefunctions, or quantum states, in which a quantum system can be found, forms an abstract complex vector space, the **state space** V
- V is a **Hilbert space**, i.e., a complex vector space equipped with a **scalar product** (inner product, projection product), that is a map $V \times V \rightarrow \mathbb{C}$ defined as

$$(\psi_1, \psi_2) = \int_{-\infty}^{\infty} \psi_1^*(r, t) \psi_2(r, t) dr$$

- state spaces can be of finite dimension or infinite dimension; in the latter case, state spaces can also be discrete or continuous.
 - The spin state space of an electron in a magnetic field is of dimension 2, constituted of the state up and the state down.
 - The orbital state space of an electron in an infinite potential is infinite and discrete.
 - The position state space of an electron in space is infinite and continuous.

Properties of the Scalar Product

Inversion and Linearity

- $\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$
- linearity on the right: $\langle \psi | \lambda_1 \phi_1 + \lambda_2 \phi_2 \rangle = \lambda_1 \langle \psi | \phi_1 \rangle + \lambda_2 \langle \psi | \phi_2 \rangle$ where $(\lambda_1, \lambda_2) \in \mathbb{C}^2$
- semi-linearity on the left: $\langle \lambda_1 \psi_1 + \lambda_2 \psi_2 | \phi \rangle = \lambda_1^* \langle \psi_1 | \phi \rangle + \lambda_2^* \langle \psi_2 | \phi \rangle$ where $(\lambda_1, \lambda_2) \in \mathbb{C}^2$

Normalization

- $\langle \phi | \phi \rangle \in \mathbb{R}^+$. $\sqrt{\langle \phi | \phi \rangle}$ also noted $\|\phi\|$ is called the norm of $|\phi\rangle$
- a state $|\phi\rangle$ is said to be normalised if $\|\phi\| = 1$

Orthogonality

- $\langle \phi | \phi \rangle = 0 \Leftrightarrow |\phi\rangle = 0$
- two states $|\phi\rangle$ and $|\psi\rangle$ are said to be orthogonal if $\langle \psi | \phi \rangle = 0$

Observables and Expectation Values

- any **observable Ω** , that is, a **mesurable physical property of a quantum system**, can be represented by a corresponding **operator $\hat{\Omega}$** , a mathematical operation that can be performed on the wave function ψ respectively the corresponding state vector $|\psi\rangle$
- to obtain more information on an observable $\hat{\Omega}$ of a defined quantum system, the following associated equation, called **Eigenvalue equation**, needs to be solved:

$$\hat{\Omega} |\psi\rangle = \omega |\psi\rangle$$

- wavefunctions ψ that **fulfill the Eigenvalue equation** are called **Eigenfunctions** (allowed states)
- **Eigenvalue ω** is a constant that to the **value of the observable Ω**
- **expectation value** can be calculated as

$$\langle \Omega \rangle = \int \Psi^* \hat{\Omega} \Psi d\tau = \omega$$

because if Ψ is an **Eigenfunction**, then $\int \Psi^* \omega \Psi d\tau = \omega \int \Psi^* \Psi d\tau = \omega$

Hermitian Conjugate Operators and Hermiticity

- for any linear operator $\hat{\Omega}$, the conjugate operator (adjoint) $\hat{\Omega}^\dagger$ is defined as:

$$\langle \Psi_i | \hat{\Omega} \Psi_j \rangle = \int \Psi_i^* \hat{\Omega} \Psi_j d\tau = \int \Psi_j (\hat{\Omega}^\dagger \Psi_i)^* d\tau = \langle \hat{\Omega}^\dagger \Psi_i | \Psi_j \rangle$$

- **Hermiticity:** quantum-mechanical operators $\hat{\Omega}$ that are **identical to their own adjoint** are said to be **Hermitian operators**.

$$\hat{\Omega} = \hat{\Omega}^\dagger$$

- **any quantum-mechanical operator $\hat{\Omega}$ corresponding to a physical observable Ω can be shown to be a Hermitian operator.**

Consequences of Hermiticity

- Hermiticity has important implications (by its definition):
 - all **Eigenvalues**, the values of the observables, are **always real**, that is, $\omega = \omega^*$
 - the set of all **Eigenfunctions** $\Psi(r, t)$ is **complete**
 - the ensemble of the Eigenfunctions form an **orthonormal basis of the state**, that is, they are orthogonal (hence, linearly independent) and normalized

$$\langle \Psi_i | \Psi_j \rangle = \int \Psi_i^* \Psi_j d\tau = 0 \quad \text{for } i \neq j \quad \text{and} \quad \langle \Psi_i | \Psi_i \rangle = \int \Psi_i^* \Psi_i d\tau = 1$$

- any state vector can be formed from a combination of basis states with complex coefficients:

$$|\phi\rangle = \sum_{\nu} c_{\nu} |\psi_{\nu}\rangle \quad \text{with } c_{\nu} \in \mathbb{C}, \text{ for a discrete case}$$

$$|\phi\rangle = \int c(r) |r\rangle dr \quad \text{with } c(r) \in \mathbb{C}, \text{ for a continuous case}$$

- **Hermiticity of quantum-mechanical operators $\hat{\Omega}$ corresponding to a physical observables Ω are the basis for concepts such as hybridization and linear combination of atomic orbitals**

Born Interpretation of the Wavefunction

- probability density $\rho(r, t)$ to find a particle at the location r at time t is given by the square modulus of the complex wave function (which implies the density is always a real number)

$$\rho(r, t) = |\psi(r, t)|^2 = \psi^*(r, t)\psi(r, t)$$

- probability $P(t)$ to find a particle in an infinitesimal volume $d\tau$ around a location r at time t is

$$P(t) = \int |\psi|^2 d\tau$$

- normalization: the probability integrated over the entire space equals to 1

$$\int |N\psi|^2 d\tau = 1 \Leftrightarrow N = \left\{ \int |N\psi|^2 d\tau \right\}^{-1/2}$$

- due to Hermiticity, Eigenfunctions resulting from Eigenequations with quantum-mechanical operators $\hat{\Omega}$ corresponding to a physical observables Ω are normalized

Quantization Resulting from the Constraints of the Born Interpretation

- an acceptable wavefunction must hence be square-integrable and normalizable function mapping each point of 3D space to a complex number
- Born interpretation further implies that the wavefunction is
 - single-valued at every location r
 - not infinite over a non-infinitesimal region
 - continuous in slope and curvature
- **these conditions limits the choice of acceptable mathematical functions**
- **quantization of the allowed energies of a particle is the result of the finite probability density and the resulting constraints for the selection of acceptable wavefunctions**