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Description of Quantum-Mechanical Systems

e wave-particle duality implies that electromagnetic irradiation can display particle nature while
particles like electrons can display the characteristics of waves.

e all information on the quantum state of a quantum system at any time ¢ can be described

mathematically by a complex function y(r, 1), called wavefunction

e y(r, 1) can be regarded as a probability amplitude that defines the probability of the possible results
of measurements made on the quantum system
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Dirac Notation

® Dirac (“bra-ket”) notation treats wavefunctions as state vectors and utilizes bras and kets

e ket | @) denotes a state vector, that is, an element of an abstract complex vector space, the state

space V, and represents a state of a quantum system

e bra (f| denotes a linear functional f : V — C that maps each vector | ¢) in the vector space V

to a complex number in the complex plane C, as given by the scalar product ({f|, | ¢)), denoted

most often (f| @)

e letting the linear functional {f|act on a vector |v) is denoted as (f|v) € C that has the form of

a matrix multiplication of the row vector (f| with the column vector |v)

® advantages to understanding wavefunctions as elements of an abstract vector space:
® Bra-ket notation accomplishes simpler formulations of wavefunctions

® |inear algebra can be used to manipulate and understand state vectors corresponding to

wavefunctions
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State Space

® the ensemble of all wavefunctions, or quantum states, in which a quantum system can be found,
forms an abstract complex vector space, the state space V

e Vis a Hilbert space, i.e., a complex vector space equipped with a scalar product (inner product,
projection product), thatisamap VX V — C defined as

(1, ) = J i (r, yn(r, H)dr

® state spaces can be of finite dimension or infinite dimension; in the latter case, state spaces can also
be discrete or continuous.

® The spin state space of an electron in a magnetic field is of dimension 2, constituted of the state
up and the state down.

® The orbital state space of an electron in an infinite potential is infinite and discrete.

® The position state space of an electron in space is infinite and continuous.

46



cPrL

Properties of the Scalar Product

Inversion and Linearity

o (w|p)=(dly)*
o linearity on the right: (y| A, + 1d,) = A, {w| ;) + A, {y| P,) where (4,,1,) € C*

o semi-linearity on the left: (4, + Lyn | @) = Ay | @) + Ly, | @) where (4, 4,) € C*

Normalization

o (p|P) € R™. \/(gb | @) also noted ||@|| is called the norm of | ¢)

e astate|¢) is said to be normalised if ||@|| = 1

Orthogonality

¢ PlP)=0<]¢)=0
e two states |¢) and |y) are said to be orthogonal if (| @) = 0
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Observables and Expectation Values

e any observable €2, that is, a mesurable physical property of a quantum system, can be represented

by a corresponding operator Q , @ mathematical operation that can be performed on the wave
function y respectively the corresponding state vector |y)

e to obtain more information on an observable €2 of a defined quantum system, the following
associated equation, called Eigenvalue equation, needs to be solved:

Q |y) = | y)

e wavefunctions y that fulfill the Eigenvalue equation are called Eigenfunctions (allowed states)

e Eigenvalue w is a constant that to the value of the observable €2

® expectation value can be calculated as

(Q) = J Y+QW dr = @

because if ¥ is an Eigenfunction, then | Y*oWdr = o | Y*Wdr = w
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Hermitian Conjugate Operators and Hermiticity

e for any linear operator SA}, the conjugate operator (adjoint) Q' is defined as:

. — . — o)l — (Of
HHQ%M_PWQ%m;}Q#I%Wm;&QTﬂ%)

e Hermiticity: guantum-mechanical operators Q) that are identical to their own adjoint are said to be
Hermitian operators.

A\ A\

Q=Q

® any quantum-mechanical operator Q corresponding to a physical observable €2 can be shown to
be a Hermitian operator.
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Consequences of Hermiticity

e Hermiticity has important implications (by its definition):
e all Eigenvalues, the values of the observables, are always real, thatis, ® = o *

e the set of all Eigenfunctions W(r, 1) is complete

® the ensemble of the Eigenfunctions form an orthonormal basis of the state, that is, they are
orthogonal (hence, linearly independent) and normalized

® any state vector can be formed from a combination of basis states with complex coefficients:

‘ ¢> — Z C; ‘ l//l> with ¢, € C, for a discrete case

v

‘ ¢> — JC(I’) ‘ I’)di’ with c(r) € C, for a continuous case

® Hermiticity of quantum-mechanical operators Q corresponding to a physical observables €2 are
the basis for concepts such as hybridization and linear combination of atomic orbitals
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Born Interpretation of the Wavefunction

e probability density p(7, f) to find a particle at the location r at time t is given by the square modulus
of the complex wave function (which implies the density is always a real number)

p(r, 1) = |y(r, 0)|> = w*(r, Oy(r, 1)

e probability P(?) to find a particle in an infinitesimal volume dt around a location r at time ¢ is
B y)
P(1) = Jh/f\ dt
® normalization: the probability integrated over the entire space equals to 1

~1/2
J\Nw\zdr =1 & N= {J\Nw\zdf}

® due to Hermiticity, Eigenfunctions resulting from Eigenequations with quantum-mechanical

operators Q corresponding to a physical observables €2 are normalized
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Quantization Resulting from the Constraints of the Born Interpretation

® an acceptable wavefunction must hence be square-integrable and normalizable function mapping
each point of 3D space to a complex number

® Born interpretation further implies that the wavefunction is
® single-valued at every location r

® not infinite over a non-infinitesimal region

® continuous in slope and curvature
® these conditions limits the choice of acceptable mathematical functions

® quantization of the allowed energies of a particle is the result of the finite probability density and
the resulting constraints for the selection of acceptable wavefunctions
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